Navigation: Documentation / Collective Variables / CV:ACYL


Definition

The acylindricity of atom distribution in the group A. The value is zero when the distribution of atoms is cylindrically symmetric.

{\displaystyle \xi = \lambda_y^2 - \lambda_x^2 }

where λ are principal moments of the gyration tensor. The mass weighted gyration tensor S is defined as

{\displaystyle S_{mn} \ = \frac {\sum_{i=1}^{N} m_i (x_{m}^{(i)} - x_{m}^{(\bold A)}) (x_{n}^{(i)} - x_{n}^{(\bold A)})}{\sum_{i=1}^{N} m_i} }

The eigenvalues of the tensor are {\displaystyle \lambda_{x}^2 \leq \lambda_{y}^2 \leq \lambda_{z}^2}:

{\displaystyle 
\bold S = \begin{bmatrix}
\lambda_{x}^{2} & 0 & 0 \\
0 & \lambda_{y}^{2} & 0 \\
0 & 0 & \lambda_{z}^{2}
\end{bmatrix}
}

PBC note: The minimum-image convention is not used.


Specification

Section name: ACYL

Key Type Default Description




name string unique CV name
group_a mask atoms specifying the group A

Keys in bold are mandatory.