ABF:Controls: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
No edit summary
Line 110: Line 110:
|}
|}
The relationships between the sampled instantaneous collective and smoothed forces is given:
The relationships between the sampled instantaneous collective and smoothed forces is given:
<center><math>\bold F_{aplied}(\mathbf{\xi}_i) = \frac{ \sum\limits_{j=1}^{N_{bins}} K(\mathbf{\xi}_i,\mathbf{\xi}_j)\bold F_{estimated}(\mathbf{\xi}_j)} {\sum\limits_{j=1}^{N_{bins}} K(\mathbf{\xi}_i,\mathbf{\xi}_j) }</math></center>,  
<center><math>\bold F_{aplied}(\boldsymbol \xi_i) = \frac{ \sum\limits_{j=1}^{N_{bins}} K(\boldsymbol \xi_i,\boldsymbol \xi_j)\bold F_{estimated}(\boldsymbol \xi_j)} {\sum\limits_{j=1}^{N_{bins}} K(\boldsymbol \xi_i,\boldsymbol \xi_j) }</math></center>,  
with the Gaussian smoothing kernel defined as:
with the Gaussian smoothing kernel defined as:
<center><math>K(\bold\xi_i,\bold\xi_j) = exp\left( - \frac {1}{2} \sum\limits_{k=1}^{N_{CVS}} \frac { (\xi_{i,k} - \xi_{j,k})^2} { w_{k}^2 h_{k}^2 } \right)</math></center>,  
<center><math>K(\boldsymbol \xi_i,\boldsymbol \xi_j) = exp\left( - \frac {1}{2} \sum\limits_{k=1}^{N_{CVS}} \frac { (\xi_{i,k} - \xi_{j,k})^2} { w_{k}^2 h_{k}^2 } \right)</math></center>,  
where <math>h_{k}^2</math> is a bin width and <math>w_{k}^2</math> is an user provided factor (wfac), see [[ABF:Collective variables]].
where <math>h_{k}^2</math> is a bin width and <math>w_{k}^2</math> is an user provided factor (wfac), see [[ABF:Collective variables]].


Navigation menu