Adaptive Biasing Force Method: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
No edit summary
Line 13: Line 13:
==Description==
==Description==
===Free Energy from Unconstrained MD Simulations===
===Free Energy from Unconstrained MD Simulations===
The Adaptive Biasing Force (ABF) Method calculates the free energy as a function of selected collective variables from unconstrained molecular dynamics (MD) simulations. The method does not provide the free energy directly, but instead, it provides the free energy gradient <math>\frac{\partial G(\boldsymbol \xi)}{\partial \boldsymbol \xi}</math>, which must be integrated to get the free energy:
The Adaptive Biasing Force (ABF) nethod calculates the free energy as a function of selected collective variables from unconstrained molecular dynamics (MD) simulations. The method does not provide the free energy directly, but instead, it provides the free energy gradient <math>\frac{\partial G(\boldsymbol \xi)}{\partial \boldsymbol \xi}</math>, which must be integrated to get the free energy:
   
   
<center><math>\Delta G = G(\boldsymbol \xi_2) - G(\boldsymbol \xi_1) = \int_{\boldsymbol \xi_1}^{\boldsymbol \xi_2} \frac{\partial G(\boldsymbol \xi)} {\partial \boldsymbol \xi} \boldsymbol d \xi </math> ... (1)</center>
<center><math>\Delta G = G(\boldsymbol \xi_2) - G(\boldsymbol \xi_1) = \int_{\boldsymbol \xi_1}^{\boldsymbol \xi_2} \frac{\partial G(\boldsymbol \xi)} {\partial \boldsymbol \xi} \boldsymbol d \xi </math> ... (1)</center>
Line 58: Line 58:


===Instanteous Collective Forces===
===Instanteous Collective Forces===
TBA
PMFLib implements two approaches to calculate Equation 3.
====Simplified Algorithm====
 
====Original ABF Algorithm====
 
<center><math>\frac {d} {dt} \left( \bold Z^{-1} \frac{d \boldsymbol \xi} {dt} \right) = \frac{1}{2} \left( \frac{\bold p^+_{\xi}(t+dt) - \bold p^+_{\xi}(t) } {dt} +  \frac{\bold p^-_{\xi}(t+dt) - \bold p^-_{\xi}(t) } {dt} \right)</math> ... (11)</center>
 
where
 
<center><math>\frac {d} {dt} \left( \bold Z^{-1} \frac{d \boldsymbol \xi} {dt} \right) = \frac{1}{2} \left( \frac{\bold p^+_{\xi}(t+dt) - \bold p^+_{\xi}(t) } {dt} +  \frac{\bold p^-_{\xi}(t+dt) - \bold p^-_{\xi}(t) } {dt} \right)</math> ... (11)</center>


==References==
==References==
<references />
<references />

Navigation menu