Adaptive Biasing Force Method: Difference between revisions
Jump to navigation
Jump to search
no edit summary
No edit summary |
No edit summary |
||
Line 79: | Line 79: | ||
<center><math>\bold F_{ICF,kin}(t-dt/2) = \frac {\bold Z^{-1}(t) \nabla \boldsymbol \xi (t) - \bold Z^{-1}(t-dt) \nabla \boldsymbol \xi (t-dt)}{dt} \bold v(t-dt/2) </math> ... (12)</center> | <center><math>\bold F_{ICF,kin}(t-dt/2) = \frac {\bold Z^{-1}(t) \nabla \boldsymbol \xi (t) - \bold Z^{-1}(t-dt) \nabla \boldsymbol \xi (t-dt)}{dt} \bold v(t-dt/2) </math> ... (12)</center> | ||
Finally, to get <math>\bold F_{ICF,kin}</math> at the same time as <math>\bold F_{ICF, | Finally, to get <math>\bold F_{ICF,kin}</math> at the same time as <math>\bold F_{ICF,pot}</math>, two values are averaged: | ||
<center><math>\bold F_{ICF,kin}(t) = \frac {\bold F_{ICF,kin}(t+dt/2) + \bold F_{ICF,kin}(t-dt/2) }{2}</math> ... (13)</center> | <center><math>\bold F_{ICF,kin}(t) = \frac {\bold F_{ICF,kin}(t+dt/2) + \bold F_{ICF,kin}(t-dt/2) }{2}</math> ... (13)</center> |