Adaptive Biasing Force Method: Difference between revisions

no edit summary
No edit summary
No edit summary
 
Line 79: Line 79:
<center><math>\bold F_{ICF,kin}(t-dt/2) = \frac {\bold Z^{-1}(t) \nabla \boldsymbol \xi (t) - \bold Z^{-1}(t-dt) \nabla \boldsymbol \xi (t-dt)}{dt} \bold v(t-dt/2) </math> ... (12)</center>
<center><math>\bold F_{ICF,kin}(t-dt/2) = \frac {\bold Z^{-1}(t) \nabla \boldsymbol \xi (t) - \bold Z^{-1}(t-dt) \nabla \boldsymbol \xi (t-dt)}{dt} \bold v(t-dt/2) </math> ... (12)</center>


Finally, to get <math>\bold F_{ICF,kin}</math> at the same time as <math>\bold F_{ICF,kin}</math>, two values are averaged:
Finally, to get <math>\bold F_{ICF,kin}</math> at the same time as <math>\bold F_{ICF,pot}</math>, two values are averaged:


<center><math>\bold F_{ICF,kin}(t) = \frac {\bold F_{ICF,kin}(t+dt/2) + \bold F_{ICF,kin}(t-dt/2) }{2}</math> ... (13)</center>
<center><math>\bold F_{ICF,kin}(t) = \frac {\bold F_{ICF,kin}(t+dt/2) + \bold F_{ICF,kin}(t-dt/2) }{2}</math> ... (13)</center>
30

edits